Copied to
clipboard

G = C42.233D10order 320 = 26·5

53rd non-split extension by C42 of D10 acting via D10/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.233D10, (C4×D5)⋊6D4, C4.30(D4×D5), C20.59(C2×D4), (D5×C42)⋊8C2, C20⋊D423C2, D10.18(C2×D4), C4.4D418D5, D10⋊D437C2, Dic53(C4○D4), (C2×D4).168D10, C4.D2022C2, (C2×C20).76C23, (C2×Q8).134D10, C22⋊C4.70D10, C10.86(C22×D4), Dic54D427C2, Dic5⋊Q819C2, (C4×C20).182C22, (C2×C10).212C24, Dic5.120(C2×D4), C23.34(C22×D5), (D4×C10).150C22, (C2×D20).166C22, (C22×C10).42C23, C54(C22.26C24), (Q8×C10).121C22, C22.233(C23×D5), D10⋊C4.58C22, (C4×Dic5).338C22, (C2×Dic5).259C23, C10.D4.47C22, (C22×D5).222C23, (C2×Dic10).179C22, (C22×Dic5).137C22, C2.59(C2×D4×D5), C2.71(D5×C4○D4), (C2×Q82D5)⋊9C2, (C5×C4.4D4)⋊6C2, (C2×D42D5)⋊18C2, C10.183(C2×C4○D4), (C2×C4×D5).127C22, (C2×C4).298(C22×D5), (C2×C5⋊D4).55C22, (C5×C22⋊C4).59C22, SmallGroup(320,1340)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.233D10
C1C5C10C2×C10C2×Dic5C2×C4×D5D5×C42 — C42.233D10
C5C2×C10 — C42.233D10
C1C22C4.4D4

Generators and relations for C42.233D10
 G = < a,b,c,d | a4=b4=c10=d2=1, ab=ba, cac-1=dad=ab2, cbc-1=dbd=a2b, dcd=a2c-1 >

Subgroups: 1166 in 310 conjugacy classes, 107 normal (29 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C10, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C2×C10, C2×C42, C4×D4, C4⋊D4, C4.4D4, C4.4D4, C41D4, C4⋊Q8, C2×C4○D4, Dic10, C4×D5, C4×D5, D20, C2×Dic5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C5×Q8, C22×D5, C22×D5, C22×C10, C22.26C24, C4×Dic5, C4×Dic5, C10.D4, D10⋊C4, C4×C20, C5×C22⋊C4, C2×Dic10, C2×C4×D5, C2×C4×D5, C2×D20, C2×D20, D42D5, Q82D5, C22×Dic5, C2×C5⋊D4, D4×C10, Q8×C10, D5×C42, C4.D20, Dic54D4, D10⋊D4, C20⋊D4, Dic5⋊Q8, C5×C4.4D4, C2×D42D5, C2×Q82D5, C42.233D10
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, C24, D10, C22×D4, C2×C4○D4, C22×D5, C22.26C24, D4×D5, C23×D5, C2×D4×D5, D5×C4○D4, C42.233D10

Smallest permutation representation of C42.233D10
On 160 points
Generators in S160
(1 135 33 106)(2 114 34 86)(3 137 35 108)(4 116 36 88)(5 139 37 110)(6 118 38 90)(7 131 39 102)(8 120 40 82)(9 133 31 104)(10 112 32 84)(11 111 43 83)(12 134 44 105)(13 113 45 85)(14 136 46 107)(15 115 47 87)(16 138 48 109)(17 117 49 89)(18 140 50 101)(19 119 41 81)(20 132 42 103)(21 95 143 55)(22 79 144 64)(23 97 145 57)(24 71 146 66)(25 99 147 59)(26 73 148 68)(27 91 149 51)(28 75 150 70)(29 93 141 53)(30 77 142 62)(52 155 92 122)(54 157 94 124)(56 159 96 126)(58 151 98 128)(60 153 100 130)(61 156 76 123)(63 158 78 125)(65 160 80 127)(67 152 72 129)(69 154 74 121)
(1 100 13 73)(2 51 14 69)(3 92 15 75)(4 53 16 61)(5 94 17 77)(6 55 18 63)(7 96 19 79)(8 57 20 65)(9 98 11 71)(10 59 12 67)(21 140 158 118)(22 102 159 81)(23 132 160 120)(24 104 151 83)(25 134 152 112)(26 106 153 85)(27 136 154 114)(28 108 155 87)(29 138 156 116)(30 110 157 89)(31 58 43 66)(32 99 44 72)(33 60 45 68)(34 91 46 74)(35 52 47 70)(36 93 48 76)(37 54 49 62)(38 95 50 78)(39 56 41 64)(40 97 42 80)(82 145 103 127)(84 147 105 129)(86 149 107 121)(88 141 109 123)(90 143 101 125)(111 146 133 128)(113 148 135 130)(115 150 137 122)(117 142 139 124)(119 144 131 126)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 124)(2 156)(3 122)(4 154)(5 130)(6 152)(7 128)(8 160)(9 126)(10 158)(11 144)(12 21)(13 142)(14 29)(15 150)(16 27)(17 148)(18 25)(19 146)(20 23)(22 43)(24 41)(26 49)(28 47)(30 45)(31 159)(32 125)(33 157)(34 123)(35 155)(36 121)(37 153)(38 129)(39 151)(40 127)(42 145)(44 143)(46 141)(48 149)(50 147)(51 88)(52 115)(53 86)(54 113)(55 84)(56 111)(57 82)(58 119)(59 90)(60 117)(61 107)(62 135)(63 105)(64 133)(65 103)(66 131)(67 101)(68 139)(69 109)(70 137)(71 102)(72 140)(73 110)(74 138)(75 108)(76 136)(77 106)(78 134)(79 104)(80 132)(81 98)(83 96)(85 94)(87 92)(89 100)(91 116)(93 114)(95 112)(97 120)(99 118)

G:=sub<Sym(160)| (1,135,33,106)(2,114,34,86)(3,137,35,108)(4,116,36,88)(5,139,37,110)(6,118,38,90)(7,131,39,102)(8,120,40,82)(9,133,31,104)(10,112,32,84)(11,111,43,83)(12,134,44,105)(13,113,45,85)(14,136,46,107)(15,115,47,87)(16,138,48,109)(17,117,49,89)(18,140,50,101)(19,119,41,81)(20,132,42,103)(21,95,143,55)(22,79,144,64)(23,97,145,57)(24,71,146,66)(25,99,147,59)(26,73,148,68)(27,91,149,51)(28,75,150,70)(29,93,141,53)(30,77,142,62)(52,155,92,122)(54,157,94,124)(56,159,96,126)(58,151,98,128)(60,153,100,130)(61,156,76,123)(63,158,78,125)(65,160,80,127)(67,152,72,129)(69,154,74,121), (1,100,13,73)(2,51,14,69)(3,92,15,75)(4,53,16,61)(5,94,17,77)(6,55,18,63)(7,96,19,79)(8,57,20,65)(9,98,11,71)(10,59,12,67)(21,140,158,118)(22,102,159,81)(23,132,160,120)(24,104,151,83)(25,134,152,112)(26,106,153,85)(27,136,154,114)(28,108,155,87)(29,138,156,116)(30,110,157,89)(31,58,43,66)(32,99,44,72)(33,60,45,68)(34,91,46,74)(35,52,47,70)(36,93,48,76)(37,54,49,62)(38,95,50,78)(39,56,41,64)(40,97,42,80)(82,145,103,127)(84,147,105,129)(86,149,107,121)(88,141,109,123)(90,143,101,125)(111,146,133,128)(113,148,135,130)(115,150,137,122)(117,142,139,124)(119,144,131,126), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,124)(2,156)(3,122)(4,154)(5,130)(6,152)(7,128)(8,160)(9,126)(10,158)(11,144)(12,21)(13,142)(14,29)(15,150)(16,27)(17,148)(18,25)(19,146)(20,23)(22,43)(24,41)(26,49)(28,47)(30,45)(31,159)(32,125)(33,157)(34,123)(35,155)(36,121)(37,153)(38,129)(39,151)(40,127)(42,145)(44,143)(46,141)(48,149)(50,147)(51,88)(52,115)(53,86)(54,113)(55,84)(56,111)(57,82)(58,119)(59,90)(60,117)(61,107)(62,135)(63,105)(64,133)(65,103)(66,131)(67,101)(68,139)(69,109)(70,137)(71,102)(72,140)(73,110)(74,138)(75,108)(76,136)(77,106)(78,134)(79,104)(80,132)(81,98)(83,96)(85,94)(87,92)(89,100)(91,116)(93,114)(95,112)(97,120)(99,118)>;

G:=Group( (1,135,33,106)(2,114,34,86)(3,137,35,108)(4,116,36,88)(5,139,37,110)(6,118,38,90)(7,131,39,102)(8,120,40,82)(9,133,31,104)(10,112,32,84)(11,111,43,83)(12,134,44,105)(13,113,45,85)(14,136,46,107)(15,115,47,87)(16,138,48,109)(17,117,49,89)(18,140,50,101)(19,119,41,81)(20,132,42,103)(21,95,143,55)(22,79,144,64)(23,97,145,57)(24,71,146,66)(25,99,147,59)(26,73,148,68)(27,91,149,51)(28,75,150,70)(29,93,141,53)(30,77,142,62)(52,155,92,122)(54,157,94,124)(56,159,96,126)(58,151,98,128)(60,153,100,130)(61,156,76,123)(63,158,78,125)(65,160,80,127)(67,152,72,129)(69,154,74,121), (1,100,13,73)(2,51,14,69)(3,92,15,75)(4,53,16,61)(5,94,17,77)(6,55,18,63)(7,96,19,79)(8,57,20,65)(9,98,11,71)(10,59,12,67)(21,140,158,118)(22,102,159,81)(23,132,160,120)(24,104,151,83)(25,134,152,112)(26,106,153,85)(27,136,154,114)(28,108,155,87)(29,138,156,116)(30,110,157,89)(31,58,43,66)(32,99,44,72)(33,60,45,68)(34,91,46,74)(35,52,47,70)(36,93,48,76)(37,54,49,62)(38,95,50,78)(39,56,41,64)(40,97,42,80)(82,145,103,127)(84,147,105,129)(86,149,107,121)(88,141,109,123)(90,143,101,125)(111,146,133,128)(113,148,135,130)(115,150,137,122)(117,142,139,124)(119,144,131,126), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,124)(2,156)(3,122)(4,154)(5,130)(6,152)(7,128)(8,160)(9,126)(10,158)(11,144)(12,21)(13,142)(14,29)(15,150)(16,27)(17,148)(18,25)(19,146)(20,23)(22,43)(24,41)(26,49)(28,47)(30,45)(31,159)(32,125)(33,157)(34,123)(35,155)(36,121)(37,153)(38,129)(39,151)(40,127)(42,145)(44,143)(46,141)(48,149)(50,147)(51,88)(52,115)(53,86)(54,113)(55,84)(56,111)(57,82)(58,119)(59,90)(60,117)(61,107)(62,135)(63,105)(64,133)(65,103)(66,131)(67,101)(68,139)(69,109)(70,137)(71,102)(72,140)(73,110)(74,138)(75,108)(76,136)(77,106)(78,134)(79,104)(80,132)(81,98)(83,96)(85,94)(87,92)(89,100)(91,116)(93,114)(95,112)(97,120)(99,118) );

G=PermutationGroup([[(1,135,33,106),(2,114,34,86),(3,137,35,108),(4,116,36,88),(5,139,37,110),(6,118,38,90),(7,131,39,102),(8,120,40,82),(9,133,31,104),(10,112,32,84),(11,111,43,83),(12,134,44,105),(13,113,45,85),(14,136,46,107),(15,115,47,87),(16,138,48,109),(17,117,49,89),(18,140,50,101),(19,119,41,81),(20,132,42,103),(21,95,143,55),(22,79,144,64),(23,97,145,57),(24,71,146,66),(25,99,147,59),(26,73,148,68),(27,91,149,51),(28,75,150,70),(29,93,141,53),(30,77,142,62),(52,155,92,122),(54,157,94,124),(56,159,96,126),(58,151,98,128),(60,153,100,130),(61,156,76,123),(63,158,78,125),(65,160,80,127),(67,152,72,129),(69,154,74,121)], [(1,100,13,73),(2,51,14,69),(3,92,15,75),(4,53,16,61),(5,94,17,77),(6,55,18,63),(7,96,19,79),(8,57,20,65),(9,98,11,71),(10,59,12,67),(21,140,158,118),(22,102,159,81),(23,132,160,120),(24,104,151,83),(25,134,152,112),(26,106,153,85),(27,136,154,114),(28,108,155,87),(29,138,156,116),(30,110,157,89),(31,58,43,66),(32,99,44,72),(33,60,45,68),(34,91,46,74),(35,52,47,70),(36,93,48,76),(37,54,49,62),(38,95,50,78),(39,56,41,64),(40,97,42,80),(82,145,103,127),(84,147,105,129),(86,149,107,121),(88,141,109,123),(90,143,101,125),(111,146,133,128),(113,148,135,130),(115,150,137,122),(117,142,139,124),(119,144,131,126)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,124),(2,156),(3,122),(4,154),(5,130),(6,152),(7,128),(8,160),(9,126),(10,158),(11,144),(12,21),(13,142),(14,29),(15,150),(16,27),(17,148),(18,25),(19,146),(20,23),(22,43),(24,41),(26,49),(28,47),(30,45),(31,159),(32,125),(33,157),(34,123),(35,155),(36,121),(37,153),(38,129),(39,151),(40,127),(42,145),(44,143),(46,141),(48,149),(50,147),(51,88),(52,115),(53,86),(54,113),(55,84),(56,111),(57,82),(58,119),(59,90),(60,117),(61,107),(62,135),(63,105),(64,133),(65,103),(66,131),(67,101),(68,139),(69,109),(70,137),(71,102),(72,140),(73,110),(74,138),(75,108),(76,136),(77,106),(78,134),(79,104),(80,132),(81,98),(83,96),(85,94),(87,92),(89,100),(91,116),(93,114),(95,112),(97,120),(99,118)]])

56 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A···4F4G4H4I4J4K4L4M4N4O4P4Q4R5A5B10A···10F10G10H10I10J20A···20L20M20N20O20P
order12222222224···44444444444445510···101010101020···2020202020
size111144101020202···2445555101010102020222···288884···48888

56 irreducible representations

dim1111111111222222244
type+++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2D4D5C4○D4D10D10D10D10D4×D5D5×C4○D4
kernelC42.233D10D5×C42C4.D20Dic54D4D10⋊D4C20⋊D4Dic5⋊Q8C5×C4.4D4C2×D42D5C2×Q82D5C4×D5C4.4D4Dic5C42C22⋊C4C2×D4C2×Q8C4C2
# reps1114411111428282248

Matrix representation of C42.233D10 in GL6(𝔽41)

3200000
0320000
0040000
0004000
000014
00002040
,
9180000
32320000
0040000
0004000
00004037
0000211
,
100000
40400000
00343400
007100
00004037
000001
,
40390000
010000
007700
00403400
000010
00002040

G:=sub<GL(6,GF(41))| [32,0,0,0,0,0,0,32,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,20,0,0,0,0,4,40],[9,32,0,0,0,0,18,32,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,21,0,0,0,0,37,1],[1,40,0,0,0,0,0,40,0,0,0,0,0,0,34,7,0,0,0,0,34,1,0,0,0,0,0,0,40,0,0,0,0,0,37,1],[40,0,0,0,0,0,39,1,0,0,0,0,0,0,7,40,0,0,0,0,7,34,0,0,0,0,0,0,1,20,0,0,0,0,0,40] >;

C42.233D10 in GAP, Magma, Sage, TeX

C_4^2._{233}D_{10}
% in TeX

G:=Group("C4^2.233D10");
// GroupNames label

G:=SmallGroup(320,1340);
// by ID

G=gap.SmallGroup(320,1340);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,232,100,1123,346,297,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^10=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a*b^2,c*b*c^-1=d*b*d=a^2*b,d*c*d=a^2*c^-1>;
// generators/relations

׿
×
𝔽