metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42.233D10, (C4×D5)⋊6D4, C4.30(D4×D5), C20.59(C2×D4), (D5×C42)⋊8C2, C20⋊D4⋊23C2, D10.18(C2×D4), C4.4D4⋊18D5, D10⋊D4⋊37C2, Dic5⋊3(C4○D4), (C2×D4).168D10, C4.D20⋊22C2, (C2×C20).76C23, (C2×Q8).134D10, C22⋊C4.70D10, C10.86(C22×D4), Dic5⋊4D4⋊27C2, Dic5⋊Q8⋊19C2, (C4×C20).182C22, (C2×C10).212C24, Dic5.120(C2×D4), C23.34(C22×D5), (D4×C10).150C22, (C2×D20).166C22, (C22×C10).42C23, C5⋊4(C22.26C24), (Q8×C10).121C22, C22.233(C23×D5), D10⋊C4.58C22, (C4×Dic5).338C22, (C2×Dic5).259C23, C10.D4.47C22, (C22×D5).222C23, (C2×Dic10).179C22, (C22×Dic5).137C22, C2.59(C2×D4×D5), C2.71(D5×C4○D4), (C2×Q8⋊2D5)⋊9C2, (C5×C4.4D4)⋊6C2, (C2×D4⋊2D5)⋊18C2, C10.183(C2×C4○D4), (C2×C4×D5).127C22, (C2×C4).298(C22×D5), (C2×C5⋊D4).55C22, (C5×C22⋊C4).59C22, SmallGroup(320,1340)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C42.233D10
G = < a,b,c,d | a4=b4=c10=d2=1, ab=ba, cac-1=dad=ab2, cbc-1=dbd=a2b, dcd=a2c-1 >
Subgroups: 1166 in 310 conjugacy classes, 107 normal (29 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C10, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C2×C10, C2×C42, C4×D4, C4⋊D4, C4.4D4, C4.4D4, C4⋊1D4, C4⋊Q8, C2×C4○D4, Dic10, C4×D5, C4×D5, D20, C2×Dic5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C5×Q8, C22×D5, C22×D5, C22×C10, C22.26C24, C4×Dic5, C4×Dic5, C10.D4, D10⋊C4, C4×C20, C5×C22⋊C4, C2×Dic10, C2×C4×D5, C2×C4×D5, C2×D20, C2×D20, D4⋊2D5, Q8⋊2D5, C22×Dic5, C2×C5⋊D4, D4×C10, Q8×C10, D5×C42, C4.D20, Dic5⋊4D4, D10⋊D4, C20⋊D4, Dic5⋊Q8, C5×C4.4D4, C2×D4⋊2D5, C2×Q8⋊2D5, C42.233D10
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, C24, D10, C22×D4, C2×C4○D4, C22×D5, C22.26C24, D4×D5, C23×D5, C2×D4×D5, D5×C4○D4, C42.233D10
(1 135 33 106)(2 114 34 86)(3 137 35 108)(4 116 36 88)(5 139 37 110)(6 118 38 90)(7 131 39 102)(8 120 40 82)(9 133 31 104)(10 112 32 84)(11 111 43 83)(12 134 44 105)(13 113 45 85)(14 136 46 107)(15 115 47 87)(16 138 48 109)(17 117 49 89)(18 140 50 101)(19 119 41 81)(20 132 42 103)(21 95 143 55)(22 79 144 64)(23 97 145 57)(24 71 146 66)(25 99 147 59)(26 73 148 68)(27 91 149 51)(28 75 150 70)(29 93 141 53)(30 77 142 62)(52 155 92 122)(54 157 94 124)(56 159 96 126)(58 151 98 128)(60 153 100 130)(61 156 76 123)(63 158 78 125)(65 160 80 127)(67 152 72 129)(69 154 74 121)
(1 100 13 73)(2 51 14 69)(3 92 15 75)(4 53 16 61)(5 94 17 77)(6 55 18 63)(7 96 19 79)(8 57 20 65)(9 98 11 71)(10 59 12 67)(21 140 158 118)(22 102 159 81)(23 132 160 120)(24 104 151 83)(25 134 152 112)(26 106 153 85)(27 136 154 114)(28 108 155 87)(29 138 156 116)(30 110 157 89)(31 58 43 66)(32 99 44 72)(33 60 45 68)(34 91 46 74)(35 52 47 70)(36 93 48 76)(37 54 49 62)(38 95 50 78)(39 56 41 64)(40 97 42 80)(82 145 103 127)(84 147 105 129)(86 149 107 121)(88 141 109 123)(90 143 101 125)(111 146 133 128)(113 148 135 130)(115 150 137 122)(117 142 139 124)(119 144 131 126)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 124)(2 156)(3 122)(4 154)(5 130)(6 152)(7 128)(8 160)(9 126)(10 158)(11 144)(12 21)(13 142)(14 29)(15 150)(16 27)(17 148)(18 25)(19 146)(20 23)(22 43)(24 41)(26 49)(28 47)(30 45)(31 159)(32 125)(33 157)(34 123)(35 155)(36 121)(37 153)(38 129)(39 151)(40 127)(42 145)(44 143)(46 141)(48 149)(50 147)(51 88)(52 115)(53 86)(54 113)(55 84)(56 111)(57 82)(58 119)(59 90)(60 117)(61 107)(62 135)(63 105)(64 133)(65 103)(66 131)(67 101)(68 139)(69 109)(70 137)(71 102)(72 140)(73 110)(74 138)(75 108)(76 136)(77 106)(78 134)(79 104)(80 132)(81 98)(83 96)(85 94)(87 92)(89 100)(91 116)(93 114)(95 112)(97 120)(99 118)
G:=sub<Sym(160)| (1,135,33,106)(2,114,34,86)(3,137,35,108)(4,116,36,88)(5,139,37,110)(6,118,38,90)(7,131,39,102)(8,120,40,82)(9,133,31,104)(10,112,32,84)(11,111,43,83)(12,134,44,105)(13,113,45,85)(14,136,46,107)(15,115,47,87)(16,138,48,109)(17,117,49,89)(18,140,50,101)(19,119,41,81)(20,132,42,103)(21,95,143,55)(22,79,144,64)(23,97,145,57)(24,71,146,66)(25,99,147,59)(26,73,148,68)(27,91,149,51)(28,75,150,70)(29,93,141,53)(30,77,142,62)(52,155,92,122)(54,157,94,124)(56,159,96,126)(58,151,98,128)(60,153,100,130)(61,156,76,123)(63,158,78,125)(65,160,80,127)(67,152,72,129)(69,154,74,121), (1,100,13,73)(2,51,14,69)(3,92,15,75)(4,53,16,61)(5,94,17,77)(6,55,18,63)(7,96,19,79)(8,57,20,65)(9,98,11,71)(10,59,12,67)(21,140,158,118)(22,102,159,81)(23,132,160,120)(24,104,151,83)(25,134,152,112)(26,106,153,85)(27,136,154,114)(28,108,155,87)(29,138,156,116)(30,110,157,89)(31,58,43,66)(32,99,44,72)(33,60,45,68)(34,91,46,74)(35,52,47,70)(36,93,48,76)(37,54,49,62)(38,95,50,78)(39,56,41,64)(40,97,42,80)(82,145,103,127)(84,147,105,129)(86,149,107,121)(88,141,109,123)(90,143,101,125)(111,146,133,128)(113,148,135,130)(115,150,137,122)(117,142,139,124)(119,144,131,126), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,124)(2,156)(3,122)(4,154)(5,130)(6,152)(7,128)(8,160)(9,126)(10,158)(11,144)(12,21)(13,142)(14,29)(15,150)(16,27)(17,148)(18,25)(19,146)(20,23)(22,43)(24,41)(26,49)(28,47)(30,45)(31,159)(32,125)(33,157)(34,123)(35,155)(36,121)(37,153)(38,129)(39,151)(40,127)(42,145)(44,143)(46,141)(48,149)(50,147)(51,88)(52,115)(53,86)(54,113)(55,84)(56,111)(57,82)(58,119)(59,90)(60,117)(61,107)(62,135)(63,105)(64,133)(65,103)(66,131)(67,101)(68,139)(69,109)(70,137)(71,102)(72,140)(73,110)(74,138)(75,108)(76,136)(77,106)(78,134)(79,104)(80,132)(81,98)(83,96)(85,94)(87,92)(89,100)(91,116)(93,114)(95,112)(97,120)(99,118)>;
G:=Group( (1,135,33,106)(2,114,34,86)(3,137,35,108)(4,116,36,88)(5,139,37,110)(6,118,38,90)(7,131,39,102)(8,120,40,82)(9,133,31,104)(10,112,32,84)(11,111,43,83)(12,134,44,105)(13,113,45,85)(14,136,46,107)(15,115,47,87)(16,138,48,109)(17,117,49,89)(18,140,50,101)(19,119,41,81)(20,132,42,103)(21,95,143,55)(22,79,144,64)(23,97,145,57)(24,71,146,66)(25,99,147,59)(26,73,148,68)(27,91,149,51)(28,75,150,70)(29,93,141,53)(30,77,142,62)(52,155,92,122)(54,157,94,124)(56,159,96,126)(58,151,98,128)(60,153,100,130)(61,156,76,123)(63,158,78,125)(65,160,80,127)(67,152,72,129)(69,154,74,121), (1,100,13,73)(2,51,14,69)(3,92,15,75)(4,53,16,61)(5,94,17,77)(6,55,18,63)(7,96,19,79)(8,57,20,65)(9,98,11,71)(10,59,12,67)(21,140,158,118)(22,102,159,81)(23,132,160,120)(24,104,151,83)(25,134,152,112)(26,106,153,85)(27,136,154,114)(28,108,155,87)(29,138,156,116)(30,110,157,89)(31,58,43,66)(32,99,44,72)(33,60,45,68)(34,91,46,74)(35,52,47,70)(36,93,48,76)(37,54,49,62)(38,95,50,78)(39,56,41,64)(40,97,42,80)(82,145,103,127)(84,147,105,129)(86,149,107,121)(88,141,109,123)(90,143,101,125)(111,146,133,128)(113,148,135,130)(115,150,137,122)(117,142,139,124)(119,144,131,126), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,124)(2,156)(3,122)(4,154)(5,130)(6,152)(7,128)(8,160)(9,126)(10,158)(11,144)(12,21)(13,142)(14,29)(15,150)(16,27)(17,148)(18,25)(19,146)(20,23)(22,43)(24,41)(26,49)(28,47)(30,45)(31,159)(32,125)(33,157)(34,123)(35,155)(36,121)(37,153)(38,129)(39,151)(40,127)(42,145)(44,143)(46,141)(48,149)(50,147)(51,88)(52,115)(53,86)(54,113)(55,84)(56,111)(57,82)(58,119)(59,90)(60,117)(61,107)(62,135)(63,105)(64,133)(65,103)(66,131)(67,101)(68,139)(69,109)(70,137)(71,102)(72,140)(73,110)(74,138)(75,108)(76,136)(77,106)(78,134)(79,104)(80,132)(81,98)(83,96)(85,94)(87,92)(89,100)(91,116)(93,114)(95,112)(97,120)(99,118) );
G=PermutationGroup([[(1,135,33,106),(2,114,34,86),(3,137,35,108),(4,116,36,88),(5,139,37,110),(6,118,38,90),(7,131,39,102),(8,120,40,82),(9,133,31,104),(10,112,32,84),(11,111,43,83),(12,134,44,105),(13,113,45,85),(14,136,46,107),(15,115,47,87),(16,138,48,109),(17,117,49,89),(18,140,50,101),(19,119,41,81),(20,132,42,103),(21,95,143,55),(22,79,144,64),(23,97,145,57),(24,71,146,66),(25,99,147,59),(26,73,148,68),(27,91,149,51),(28,75,150,70),(29,93,141,53),(30,77,142,62),(52,155,92,122),(54,157,94,124),(56,159,96,126),(58,151,98,128),(60,153,100,130),(61,156,76,123),(63,158,78,125),(65,160,80,127),(67,152,72,129),(69,154,74,121)], [(1,100,13,73),(2,51,14,69),(3,92,15,75),(4,53,16,61),(5,94,17,77),(6,55,18,63),(7,96,19,79),(8,57,20,65),(9,98,11,71),(10,59,12,67),(21,140,158,118),(22,102,159,81),(23,132,160,120),(24,104,151,83),(25,134,152,112),(26,106,153,85),(27,136,154,114),(28,108,155,87),(29,138,156,116),(30,110,157,89),(31,58,43,66),(32,99,44,72),(33,60,45,68),(34,91,46,74),(35,52,47,70),(36,93,48,76),(37,54,49,62),(38,95,50,78),(39,56,41,64),(40,97,42,80),(82,145,103,127),(84,147,105,129),(86,149,107,121),(88,141,109,123),(90,143,101,125),(111,146,133,128),(113,148,135,130),(115,150,137,122),(117,142,139,124),(119,144,131,126)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,124),(2,156),(3,122),(4,154),(5,130),(6,152),(7,128),(8,160),(9,126),(10,158),(11,144),(12,21),(13,142),(14,29),(15,150),(16,27),(17,148),(18,25),(19,146),(20,23),(22,43),(24,41),(26,49),(28,47),(30,45),(31,159),(32,125),(33,157),(34,123),(35,155),(36,121),(37,153),(38,129),(39,151),(40,127),(42,145),(44,143),(46,141),(48,149),(50,147),(51,88),(52,115),(53,86),(54,113),(55,84),(56,111),(57,82),(58,119),(59,90),(60,117),(61,107),(62,135),(63,105),(64,133),(65,103),(66,131),(67,101),(68,139),(69,109),(70,137),(71,102),(72,140),(73,110),(74,138),(75,108),(76,136),(77,106),(78,134),(79,104),(80,132),(81,98),(83,96),(85,94),(87,92),(89,100),(91,116),(93,114),(95,112),(97,120),(99,118)]])
56 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | ··· | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 4P | 4Q | 4R | 5A | 5B | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 20A | ··· | 20L | 20M | 20N | 20O | 20P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | 20 | 20 | 20 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 10 | 10 | 20 | 20 | 2 | ··· | 2 | 4 | 4 | 5 | 5 | 5 | 5 | 10 | 10 | 10 | 10 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 8 | 8 | 8 | 8 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
56 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D5 | C4○D4 | D10 | D10 | D10 | D10 | D4×D5 | D5×C4○D4 |
kernel | C42.233D10 | D5×C42 | C4.D20 | Dic5⋊4D4 | D10⋊D4 | C20⋊D4 | Dic5⋊Q8 | C5×C4.4D4 | C2×D4⋊2D5 | C2×Q8⋊2D5 | C4×D5 | C4.4D4 | Dic5 | C42 | C22⋊C4 | C2×D4 | C2×Q8 | C4 | C2 |
# reps | 1 | 1 | 1 | 4 | 4 | 1 | 1 | 1 | 1 | 1 | 4 | 2 | 8 | 2 | 8 | 2 | 2 | 4 | 8 |
Matrix representation of C42.233D10 ►in GL6(𝔽41)
32 | 0 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 4 |
0 | 0 | 0 | 0 | 20 | 40 |
9 | 18 | 0 | 0 | 0 | 0 |
32 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 37 |
0 | 0 | 0 | 0 | 21 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
40 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 34 | 34 | 0 | 0 |
0 | 0 | 7 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 37 |
0 | 0 | 0 | 0 | 0 | 1 |
40 | 39 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 7 | 0 | 0 |
0 | 0 | 40 | 34 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 20 | 40 |
G:=sub<GL(6,GF(41))| [32,0,0,0,0,0,0,32,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,20,0,0,0,0,4,40],[9,32,0,0,0,0,18,32,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,21,0,0,0,0,37,1],[1,40,0,0,0,0,0,40,0,0,0,0,0,0,34,7,0,0,0,0,34,1,0,0,0,0,0,0,40,0,0,0,0,0,37,1],[40,0,0,0,0,0,39,1,0,0,0,0,0,0,7,40,0,0,0,0,7,34,0,0,0,0,0,0,1,20,0,0,0,0,0,40] >;
C42.233D10 in GAP, Magma, Sage, TeX
C_4^2._{233}D_{10}
% in TeX
G:=Group("C4^2.233D10");
// GroupNames label
G:=SmallGroup(320,1340);
// by ID
G=gap.SmallGroup(320,1340);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,232,100,1123,346,297,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^10=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a*b^2,c*b*c^-1=d*b*d=a^2*b,d*c*d=a^2*c^-1>;
// generators/relations